

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

Semester: 5 th						
Paper code: AIDS351/AIML351		L	T/P	Cre	edits	
Subject: Operating Systems Lab		0	2		1	
Marking Scheme:						
1. Teachers Continuous Evaluation: As per university examination norms from time to time						
2. End term Examination: As per university examination norms from time to time						
INSTRUCTIONS TO EVALUATORS: Maximum Marks: As per university norms						
1. This is the practical component of the corresponding theory paper.						
2. The practical list shall be notified by the teacher in the first week of the class						
commencement under the intimation to the office of the HOD/ Institution in which they						
appear is being offered from the list of practicals below.						
3. Instructors can add any other additional experiments over and above the mentioned in the						
experiment list which they think is important.						
4. At least 8 experiments must be performed by the students.						
Course Objectives:						
1. To apply the concepts of storage management, process scheduling using programming						
languages.						
2. To study Several Operating systems and their commands to analyze the memory						
management, process scheduling concepts.						
Course Outcomes:						
CO1 Apply the techniques used to implement processes and threads as well as the different						
algorithms for process scheduling.						
Implement the basic commands of the OS and will execute the various system calls,						
process synchronization problems using semaphore.						
Course Outcomes (CO) to Programme Outcomes (PO) Mapping						
(Scale 1: Low, 2: Medium, 3: High)						
CO/PO PO01 PO02 PO03 PO04 PO05 PO06 PO0	7 PO08	PO09	PO10	PO11	PO12	

List of Experiments:

3

2

2

CO1

CO₂

1. Write a C program to implement FCFS scheduling algorithm.

1

- 2. Write a C program to implement a round robin scheduling algorithm.
- 3. Implementation of the following Memory Allocation Methods for fixed partition a) First Fit b) Worst Fit c) Best Fit.

1

1

1

1

2

4. Write a program to implement reader/writer problems using semaphore.

1

- 5. Write a program to implement Banker's algorithm for deadlock avoidance.
- 6. To study of basic UNIX commands and various UNIX editors such as vi, ed, ex and EMACS

Approved by BoS of USAR: 15/06/23, Approved by AC sub-committee : 04/07/23 Applicable from Batch Admitted in Academic Session 2022-23 Onwards Page | 99

GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, EAST DELHI CAMPUS, SURAJMAL VIHAR-110092

- 7. Process Management a) fork() b) execv() c) execlp() d) wait() and e) sleep()
 - A. Program to implement the fork function using C.
 - B. Program to implement execv function using C.
 - C. Program to implement execlp function.
 - D. Program to implement wait function using C.
 - E. Program to implement sleep function using C.
- 8. To write simple shell programs by using conditional, branching and looping statements.
- 9. Write a Shell Program to swap the two integers.